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I.  INTRODUCTION 

The quasi-static compression tests reported herein were conducted 
in connection with the Core Materials Program of the Solid Mechanics 
Branch of the Terminal Ballistics Laboratory. 

The purpose of the Core Materials Program is to characterize the 
mechanical behavior of armor and armor penetrators.  This characterization 
should prove useful to designers of armored vehicles and projectiles, 
and will provide valuable input data for computer codes modeling penetra- 
tion processes. 

This report presents the results of quasi-static compression tests 
on two aluminum alloys; 2024-T3510, and 6061-T6.  These results include 
the yield strength, average stress-strain curve, Poisson's ratio, and 
Young's moduli for each aluminum alloy. 

These two materials are the fourth and fifth in a series »» which 
includes seven steel and seven aluminum alloys*.  The results of other 
tests will follow when completed. 

II.  TEST PROCEDURES 

The testing apparatus, procedures and data reduction regimen have 
been reported previously1.  The test specimens of each material were 
machined from one-inch diameter rods of commercial purity.  Six test 
specimens of each material were prepared as right circular cylinders, 
9.5mm in diameter and 28.6mm long.  Samples of both materials were 
chemically analyzed at the Frankford Arsenal.  The temperature for the 
tests was 22 C. 

iff. A. Murray, Jr. and J. H. Suckling, BRL MR 2399, "Quasi-Static Compres- 
sion Stress-Strain Curves—I, 1066 Steel", Ballistics Research Laborator- 
ies,  APG,  MD.,   January  1974.     AD 922  704 L. 

2E.  A Murray,  Jr.,  BRL MR 2589,   "Quasi-static Compression Stress-Strain 
Curves—II,   7039 Aluminum," Ballistics Research Laboratories,   APG,  MD. 
February   1976.     AD #B009646L. 3Ralph F. Benck and E. A Murray, Jr., BRL MR 2480, "Quasi-Static Compres- 
sion Stress-Strain Curves—III, 5083-H131 Aluminum", Ballistics Research 
Laboratories,  APG,  MD.   May  1975.     AD BOO 4159 L. 

ASteel Alloys:   1020,   1066,   4145,   4160,   4340,   Bearcat,   and RHA.     Aluminum 
Alloys:     HOOF,   2024-T3510,   5083-H131,   6061-T6,   7039,   7075,   and 7475. 
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III.  RESULTS 

The average engineering stress-strain curves for six specimens each 
of 2024-T3510 and 6061-T6 aluminum alloy are shown in Figures 1 and 2, 
respectively.  The vertical error bands in the figures are the variations 
of stress of plus and minus one standard deviation. The tests were termi- 
nated upon failure of one of the strain gages.  Table I shows the maximum 
strain attained prior to gage failure.  The curves presented in Figures 1 
and 2 are the averages from at least two tests. 

Figures 3 and 4 present longitudinal and circumferential stress-strain 
relationships for a representative specimen each of the 2024-T3510 and 
6061-T6 aluminum alloy material. 

The curves labeled "longitudinal" in Figures 3 and 4 indicate both 
the individual response of each of two diametrically opposing gages as 
well as their average.  The average value is the longitudinal strain in 
the specimen at any load (-stress), and divergence from this average is 
indicative of the amount of bending present.  The near coalescence of the 
curves for individual gages with their average in each test demonstrates 
the high degree of axiality maintained throughout these compression tests. 

Poisson's ratios as a function of strain for these two alloys are 
similar; examples of Poisson's ratio up to one and up to five percent 
strain are shown in Figures 5 and 6, respectively.  Poisson's ratio for 
both alloys is 0.32 in the elastic region and approaches 0.5 as the mater- 
ial becomes more and more plastic. 

The average yield strength, Young's modulus and Poisson's ratio for 
the 2024-T3510 and 6061-T6 alloys are presented in Table II.  The number 
within the parentheses is the standard deviation based on six tests of 
each alloy. The yield strength is defined as that stress at which the 
specimens deviated 0.2 percent from proportionality of stress to strain4. 

The results of chemical analyses of samples of both alloys are shown 
in Table III. 

^Taylor Lyman,  Ed.,  Metals Handbook,   1348 Edition,  The American Society 
for Metals,  Cleveland,   Ohio,  p. 16. 



TABLE I 

MAXIMUM STRAIN PRIOR TO GAGE FAILURE 

SPECIMEN 

1 

2024-T3510 
Q. 
0 

7.26 

6061-T6 
% 

8.54 
2 7.37 4.68 
3 9.37 6.04 
4 9.76 4.75 
5 8.31 4.87 
6 3.39 8.12 

TABLE II 

MEASURED MATERIAL PROPERTIES 
OF  2024-T3510 AND  6061-T6 ALUM 

PROPERTY 

INUM ALLOYS AT 

2024-T3510 

22 
Jc 

6061-T6 

Average Yield Strength,  MPa <S.D.> * 
Young's modulus,  GPa  <(S.D.)>* 
Poisson's ratio 
Hardness,   BHN 

444   <5.1> 
76.1   <0.9> 

0.321 
148 

267   <2.3> 
72.2   <0.7> 

0.320 
95 

*S.D. = Standard Deviation 



TABLE III 

CHEMICAL ANALYSIS OF 2024-T3510 AND 
6061-T6 ALUMINUM ALLOYS* 

ELEMENT WEIGHT PERCENT 

2024-T3510 6061-T6 

Copper 4.20 0.2/0.4 
Silicon 0.1/0.2 0.4/0.8 
Iron 0.2/0.4 0.15/0.35 
Manganese 0.4/0.8 0.06 
Zinc 0.05/0.15 <0.1 
Magnesium 1.50 1.11 
Titanium <0.05 <0.05 
Chromium <0.03 0.10/0.25 
Nickel <0.02 <0.01 
Tin None detected None detected 
Lead <0.05 0.05, <0.05 
Aluminum Remainder Remainder 

''Analysis by Frankford Arsenal, Materials Laboratory, Technical 
Support Directorate.  Spectroscopic Analysis. 

An analytical relationship between Poisson's rati 
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E  (a) = longitudinal strain at a  stress 



v = Poisson's ratio determined from static 
tests via extrapolation to zero strain. 

E = Young's modulus determined from static 
test via "best fit" in linear elastic 
region. 

In developing (1) it has been assumed that the "plastic" component of 
strain is incompressible, viz. 

-  Sve 

E   l OJ - fr xx    E 

1/2 (2) 

All terms in Equation 2 are as defined for Equation 1, and E  (O) is 
60 

the circumferential strain at longitudinal stress a. 

v       and v   ,.   . are plotted in Figure 7 versus e  for one 
apparent     predicted 6 xx 

sample of 2024-T3510 alloy.  For these calculations the measured values of 
E and v (76.588 GPa and 0.323 respectively) for this particular test were 
used and not the average values shown in Table II.  v      .is Poisson's 6 apparent 
ratio calculated from the ratio of the experimentally measured longitudinal 
and circumferential strains. 

Figure 7 shows that expression (1) is an accurate predictor of 
Poisson's ratio for the rapidly ascending portion of the curve.  For the 
remainder of Figure 7 the curves separate with the maximum separation 
being about five percent.  The five other samples of 2024-T3510 and those 
of 6061-T6 that are reported herein yielded curves similar to those shown 
in Figure 7 with the difference between v       and v   ,.   , at strains 

apparent     predicted 
greater then two percent being in the order of plus or minus six percent. 

In lieu of assuming an incompressible plastic component of the defor- 
mation and linear work hardening, one may in fact, take the other point of 
view and use the test data of this report to compute the material compress- 
ibility as a function of stress or strain.  In this way, a separate check 
is made on the final assumptions of the analytical development in the 
Appendix. 

Continue to assume homogeneous deformation and stress states as put 
forth in the Appendix.  Consistent with notation introduced there, the 

2 2 initial and final volumes of a cylinder are V = -rr r 1  and V, = Tr(r') 
2       _     J o     o o     1    v ' 

fl + e  ) 1 = IT r  (1 + E„„)  (l + e  ) 1 •  Hence one easily has for the v  xxJ     o     o    68      xx  o 
compressibility 



V -V 
AV    ' 

o    o      L J 
(3) 

The Poisson's ratio vs. strain data of Figures 5, 6, and 7 coupled with 
Appendix Equation A-4 may be used to recover the observed variable £„„ as 

AV 
a function of e  .  Equation (3) expresses the compressibility —n— implicity 

as a function of stress; the functional form may be made an explicit func- 
tion of o by means of the experimentally determined stress-strain relation 

ÄV 
e= e(o).  Thus one may plot —^— as a function of o, and this should be the 

most instructive manner in which to view this interdependence.  For, a 
consequence of the development in the Appendix is that only the current 
value of the elastic component of strain (in the elastic-plastic decomposi- 
tion) contributes to volume change.  Since this is taken to be linearly 
related to longitudinal stress, equal stress increments should cause equal 
volume change increments. 

Figure 8 shows a plot of the compressibility —^— as a function of 

stress, calculated by means of Equation 3 and the stress-strain curve for 
the same test that was used to derive Figure 7.  The compressibility is 
nearly linear from the origin to a point whose stress value is 465 MPa. 
Note the radical departure in the compressibility curve from the linear 
one at 465 MPa, as well as the first detectable departure at 425 MPa. 
Interestingly enough, the behavior beyond 465 MPa is nearly linear also, 
but at a much reduced modulus of compressibility.  It is also noteworthy 
that the strain corresponding to 465 MPa is well beyond the "knee" of the 
stress-strain curve of Figure 1, and corresponds to a strain of 1.10 per- 
cent.  The proportional limit is closer to 425 MPa, the first detectable 
departure point in Figure 8, with corresponding strain 0.59 percent.  These 
two observations are consistent with the extremely close agreement between 
apparent (measured) and predicted values of Poisson's ratio up to 1.10 
percent strain in Figure 7.  Although the differences beyond this strain 
were within ±6 percent, they are now known to be related to the radical 
change in compressibility at 1.10 percent longitudinal strain. 

At this point, it is conjecture as to the causes of (1) the radical 
change in material compressibility noted here and (2) its delayed occur- 
rence well beyond the proportional limit.  The results, however, are not 
inconsistent with empirical multi-stress component plasticity theories of 
Bell5 as to regions of onset of total plasticity and the transition 
strains.  Further investigations will be reported at a later date. 

5James F.  Bell,   BRL CR 250,   "A New,   General Theory of Plasticity for 
Structural Metal Alloys",  Ballistics Research Laboratories,  APG, MD, 
July 1975.    AD U014192L. 
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IV.  CONCLUSIONS 

Quasi-static compression tests were made on 2024-T3510 and 6061-T6 
aluminum alloys.  The data acquired from these tests have been reduced and 
are in a form readily applicable for users. 

It is evident from the reproducibility of the data, that the results 
presented are an accurate, partial description of the elastic and plastic 
properties of 2024-T3510 and 6061-T6 aluminum alloys. 

An analytical expression has been developed that accurately predicts 
the behavior of Poisson's ratio as a function of strain in the strain 
region beyond the proportional limit. 

Well beyond the proportional elastic limit, a radical change occurs 
in the compressibility of each of these two alloys, and is the point of 
demarcation where the above analytical prescription begins to develop 
errors of +6 percent. The compressibility may relate to newer empirical 
constitutive equations developed by Bell (see Reference 5), but such a 
connection is speculative at this point. 

11 
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APPENDIX 

An expression for the apparent Poisson's ratio in the strain region 
beyond the linear elastic limit and preceding large plastic deformations 
(> 10%) will be developed.  Consider the homogeneous deformation of a right 
circular cylinder of material as should be experienced in laboratory uni- 
axial tension or compression testing.  Assume that plane sections normal 

to the x axis in the accompanying 
sketch remain plane, and that the 
strain fields are homogeneous in x 
and r, and independent of 9.  The 
apparent Poisson's ratio, v  , in 

such an experiment is defined as the 
ratio of radial contraction to longi- 
tudinal extension, normalized to 
strain measures.  That is, if the 
cylinder sketched is of initial length 
1  and radius r , and the longitudinal 
o o & 

extension is u and the accompanying 

radial motion is u  (positive if out- 
r r 

ward), then 

V   4»   V 

°xx 

The longitudinal "engineering" strain 

app 

u ,r 
r/ o 

u .1 
x/ o 

(A-l) 

c       is recognized as the denominator 
xx       b 

and would be the quantity measured by a longitudinal strain gage. u ,1 . 
x/ o 

The quantity in the numerator, u ,r , r/ o 
Let r be the initial radius of the cylindrical surface, and r*  = r +u 

o y or 
the radius after some homogeneous deformation. 
strain would be circumferential strain 

is the "hoop" engineering strain e 
6( 

surface, and r"  = r +u 
o r 

Then the hoop engineering 

2TT r 2TT r 

2TT r 
(A-2) 

This is the quantity which would be measured by a strain gage oriented in 
the "hoop" direction.  Thus, the apparent Poisson's ratio is determined by: 

app 
UG 

XX 
(A-3) 

A typical stress-strain curve for materials of interest would have the 
form represented in the second sketch.  Plotted also on this sketch is the 
negative value of the hoop strain F 60' Since 



Longitudinal 

>€tfV   and   €, ee 

( Linear  elastic limit ) 

the algebraic sign of e  will always be opposite that of e  , suppress xx 
the (-) sign in the ensuing argument and treat the plotted variables as if 
they are both of the same sign and positive.  Thus Equation A-3 becomes 
for the purposes of this development 

v   = + - 
app    e 

(A-4) 
xx 

as plotted. A good first approximation to materials behavior is that of 
"plastic work hardening". This means among other things, that after loading 
the material beyond the linear elastic limit M, along MP to a stress a, 
the stress-strain curve will return along PR parallel to the loading mod- 
ulus line OM upon unloading.  The accompanying negative hoop strain will 
follow along some linear path ON, another presently unprescribed path NQ, 
and subsequently return along the linear path QS. Plastic work hardening 
also means that upon reloading, from R, the material will follow the 
linear modulus line, RP, to the previous unloading point P, and then pro- 
ceed along the original curve, MPT, as if no unloading had occurred.  It 
is the purpose of this Appendix to show that path NQ of the negative hoop 
strain beyond the proportional limit is indeed prescribed in a manner con- 
sistent with the assumptions of plastic work hardening and incompressible 
plasticity. 

Define as a materials constant the ratio determined by experiment 

Je) 
(A-5) v = Materials Constant 

e 
'66 

rCe) 
"xx 
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fe]     fei 
where e   and e   are the strains respectively at the points M and N, 

XX Q 0 
the proportional limit.  This is, of course, the elastic value of Poisson's 
ratio.  In the linear elastic region the connection between stress and 
longitudinal strain is 

a      -  Ee (A-6) 
XX      XX ' 

where E is the usual Young's modulus.  From the sketch and Equation A-5, 
a connection can also be written between stress and hoop strain in the 
linear elastic region as 

a      = E* e  = E* v e   , (A-7) xx      66      e cxx ' v  ' 

where E* is an apparent modulus.  Comparing Equations A-6 and A-7 yields 

E* = — (A-8) 
ve 

Make strain decompositions into components, so that the total strain is the 
sum of an elastic and plastic component, expressed as 

e        = E   + (e„v "E^"')-  Equation A-4 may be written 

yee  £ee / 

+ (exx " ScxJ 

(e) 

- lee- 
'app   (e) 

Sex 

(A-9) 

But now assume plastic work hardening. This means that the elastic compo- 
nent is the elastic strain which would be recovered if unloading should 
occur from a stress 5, even though it is not actually done.  Hence, with 
Equation A-6 and A-7, Equation A-9 becomes 11 rv— j     uc^-wmc^ y 

_ fr * (E68(5) ' v) 
v   = /* x-v-- (A-10) app       I x 

E 

Equations (A-8) and (A-10) may be combined to yield 

ov. e 
^ (■„»> - °-T) 

v   = ~ 7-^,— rhr(- (A-ll) app   " - '       '   ' " x 5/E + /exx(5) - a/E\ 

The expression is often heard, "Poisson's ratio for plastic deforma- 
tion is equal to one-half".  Assuming an incompressible homogeneous defor- 
mation of the cylinder sketched previously, and if the volume before defor- 

2 2 
mation  is V    =  TTT     1     and  following deformation  is V..   =  irfrO     fl + e     )1   , 

o o     o & 1       '"-     J     *■     ^xxJ   o' 
one finds that setting V = V yields 

r2 =(r-)2 Cl + E ) 
o xx 

25 



or that 

r ' Ur            i i_ = l + _£ = (i+e )--S                    (A-12) 
r r   v  xx'                    v   ' o o 

1 I 2 

2 Sex + 8 exx"*'' 

Thus, with Equation A-2, Equation A-12 becomes, for an incompressible 
deformation 

eee=-Iexx C1 -f exx+---) (A"13> 

Comparing Equations A-13 and A-3, one sees that the apparent Poisson's 
ratio for a totally incompressible deformation is approximately 1/2, to 
a first order error correction of 0(3/4 e ).  This means that for a 4 

percent longitudinal strain, Poisson's ratio differs from 1/2 by 3 percent. 
Since longitudinal strains of this order are discussed in this report, this 
level of error shall be accepted.  However, Poisson's ratio is not 1/2 in 
the elastic region*, so that the assumption of total incompressibility from 
the initial state is inconsistent with reality. 

Assume now, in the expression developed into Equation A-ll, that the 
plastic component of the deformation is incompressible.  Thus, within an 
error band of approximately 3 percent, by Equation A-13 one has 

(eee(5) " °-T)  - \ (Exx<5> " !) <A"14) 

With Equation A-14, Equation A-ll becomes 

e 
— + 
HExx(5) - f) 

XX 

vapparent "      evv(o) (A-15) 

which may be rearranged to 

v (** • lA 
T5T\—irT 

1_ 
apparent       e     (a) \      E    /'   2 

(A-16) 

In Equation A-16, v and E are experimentally determined from linear 

elastic region data for the material under test, a  and z     (o) are the 

longitudinal stress and longitudinal strain at stress 5. and v & & '     apparent 
is the predicted Poisson's ratio at these values.  Equation A-16 is 
equivalent to Equation 1 of the text. 

*See3  e.g..  Table II of this report. 
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